

A buffer solution if made when 1.50 g of sodium hydroxide is added to 1.00 dm<sup>3</sup> of a 0.150 moldm<sup>-3</sup> solution of a weak acid, HA.

The acid dissociation constant, Ka = 1.79 x 10-5 moldm<sup>-3</sup>

Idm3 is

1000cm3 c) Calculate the pH of this buffer solution.

#### Owrite an expression for ka:

### @ Find the moles of acid and base used:

moles of = 
$$1.50$$
 moles of =  $0.150$  HA  $= 0.0375$ 

mdes = mass

# 3) Use this to collected the moles reacted:

#### (4) Calculate the indes of each species at equilibrium:

|                      | HA =   | → H <sup>+</sup> | + A-   |                        |
|----------------------|--------|------------------|--------|------------------------|
| initial<br>moles     | 0.150  | 0                | 0      | (conc. = moles x 1000) |
| equilibrium<br>moles | 0.1125 |                  | 0.0375 |                        |

# (5) Find the concentrations at equilibrium:

$$[HA] = 0.1125 \times 1000$$
 $[A^{-}] = 0.0375 \times 1000$ 
 $1000$ 
 $= 0.1125 \text{ moldm}^{-3}$ 
 $= 0.0375 \text{ moldm}^{-3}$ 



6 Sub these value into the Ka expression to gind [H+] ions:

$$Ka = [H^{\dagger}][A^{\dagger}] \Rightarrow [H^{\dagger}] = Ka[HA]$$

$$[A^{\dagger}]$$

$$[A^{\dagger}]$$

$$\Rightarrow \left[ H^{+} \right] = \frac{1.79 \times 10^{-5} \times 0.1125}{0.0375}$$
$$= 5.37 \times 10^{-5} \text{ moldm}^{-3}$$

@ Calculate the pH of the buffer solution:

pH = 
$$-\log_{10} (5.37 \times 10^{-5})$$
=  $4.2700...$ 
=  $4.27$ 
the pH of buffers is usually around 4.